Util
ElysiaChainOfThought
Bases: Module
A custom reasoning DSPy module that reasons step by step in order to predict the output of a task. It will automatically include the most relevant inputs: - The user's prompt - The conversation history - The atlas - Any errors (from calls of the same tool)
And you can also include optional inputs (by setting their boolean flags on initialisation to True
):
- The environment
- The collection schemas
- The tasks completed
You can also specify collection_names
to only include certain collections in the collection schemas.
It will optionally output (by setting the boolean flags on initialisation to True
):
- The reasoning (model step by step reasoning)
- A message update (if message_update
is True
), a brief 'update' message to the user.
- Whether the task is impossible (boolean)
You can use this module by calling the .aforward()
method, passing all your new inputs as keyword arguments.
You do not need to include keyword arguments for the other inputs, like the environment
.
Example:
my_module = ElysiaChainOfThought(
signature=...,
tree_data=...,
message_update=True,
environment=True,
collection_schemas=True,
tasks_completed=True,
)
my_module.aforward(input1=..., input2=..., lm=...)
Source code in elysia/util/elysia_chain_of_thought.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
|
__init__(signature, tree_data, reasoning=True, impossible=True, message_update=True, environment=False, collection_schemas=False, tasks_completed=False, collection_names=[], **config)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
signature
|
Type[Signature]
|
The signature of the module. |
required |
tree_data
|
TreeData
|
Required. The tree data from the Elysia decision tree.
Used to input the current state of the tree into the prompt.
If you are using this module as part of a tool, the |
required |
reasoning
|
bool
|
Whether to include a reasoning input (chain of thought). |
True
|
impossible
|
bool
|
Whether to include a boolean flag indicating whether the task is impossible. This is useful for stopping the tree from continuing and returning to the base of the decision tree. For example, the model judges a query impossible to execute, or the user has not provided enough information. |
True
|
message_update
|
bool
|
Whether to include a message update input. If True, the LLM output will include a brief 'update' message to the user. This describes the current action the LLM is performing. Designed to increase interactivity and provide the user with information before the final output. |
True
|
environment
|
bool
|
Whether to include an environment input. If True, the module will include the currently stored data from previous tasks and actions into the prompt. This is useful so that the LLM knows what has already been done, and can avoid repeating actions. Or to use information from the environment to perform the new action. |
False
|
collection_schemas
|
bool
|
Whether to include a collection schema input.
If True, the module will include the preprocessed collection schemas in the prompt input.
This is useful so that the LLM knows the structure of the collections, if querying or similar.
Use this sparingly, as it will use a large amount of tokens.
You can specify |
False
|
tasks_completed
|
bool
|
Whether to include a tasks completed input.
If True, the module will include the list of tasks completed input.
This is a nicely formatted list of the tasks that have been completed, with the reasoning for each task.
This is used so that the LLM has a 'stream of consciousness' of what has already been done,
as well as to stop it from repeating actions.
Other information is included in the |
False
|
collection_names
|
list[str]
|
A list of collection names to include in the prompt. If provided, this will modify the collection schema input to only include the collections in this list. This is useful if you only want to include certain collections in the prompt. And to reduce token usage. |
[]
|
**config
|
Any
|
The DSPy configuration for the module. |
{}
|
Source code in elysia/util/elysia_chain_of_thought.py
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
|
aforward_with_feedback_examples(feedback_model, client_manager, base_lm, complex_lm, num_base_lm_examples=3, return_example_uuids=False, **kwargs)
async
Use the forward pass of the module with feedback examples. This will first retrieve examples from the feedback collection, and use those as few-shot examples to run the module. It retrieves based from vectorising and searching on the user's prompt, finding similar prompts from the feedback collection. This is an EXPERIMENTAL feature, and may not work as expected.
If the number of examples is less than num_base_lm_examples
, the module will use the complex LM.
Otherwise, it will use the base LM. This is so that the less accurate, but faster base LM can be used when guidance is available.
However, when there are insufficient examples, the complex LM will be used.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
feedback_model
|
str
|
The label of the feedback data to use as examples. E.g., "decision" is the default name given to examples for the LM in the decision tree. This is used to retrieve the examples from the feedback collection. |
required |
client_manager
|
ClientManager
|
The client manager to use. |
required |
base_lm
|
LM
|
The base LM to (conditionally) use. |
required |
complex_lm
|
LM
|
The complex LM to (conditionally) use. |
required |
num_base_lm_examples
|
int
|
The threshold number of examples to use the base LM. When there are fewer examples than this, the complex LM will be used. |
3
|
**kwargs
|
Any
|
The keyword arguments to pass to the forward pass.
Important: All additional inputs to the DSPy module should be passed here as keyword arguments.
Also: Do not include |
{}
|
Returns:
Type | Description |
---|---|
Prediction
|
The prediction from the forward pass. |